The oxidative and osmotic stress responses of S. cerevisiae
نویسنده
چکیده
The yeast Hog1 is a stress responsive mitogen activated protein kinase (MAPK) similar to mammalian p38 and JNK. Rck2 is a protein kinase downstream of Hog1. The Hog1 pathway was previously implicated exclusively in the response to osmotic stress. This thesis investigates the role of the Hog1 MAPK signaling pathway in global post-transcriptional regulation and survival during environmental stress. We have shown that mutations in Hog1 pathway components make cells sensitive to oxidative and heavy metal stress and that Hog1 and Rck2 are activated during these stress conditions. Putative downstream components involved in oxidative stress resistance are identified. Rck2 has a profound effect on the translational apparatus. During stress, Rck2 prevents polysome levels from falling too low. A kinase-dead allele of Rck2 confers stress sensitivity, and causes inactive polysomes to persist bound to mRNA during stress. Transcripts encoding translational components are deregulated in rck2 mutants. In response to osmotic stress, the Hog1 pathway affects mRNA levels of several hundred genes. This is accomplished to a large extent by regulation of mRNA stability, which is fast, widespread, and specific for several large groups of genes. Regulation of mRNA stability is dynamic throughout the response and precedes accumulation as well as decline of transcript levels. Unexpectedly, Rck2 has a larger effect on total transcript levels than on stability, indicating a role in transcription. A comparison between two large scale studies reveals a positive global correlation between changes in polysomal association and mRNA stability in the adaptation phase. No global correlation was found in the early response. Among genes annotated as stress responsive, two groups were found which differed in their regulation at the polysomal level early in the response, and these were used to discover new genes with a characteristic post-transcriptional behavior after stress. Transcripts encoding components of the cytoplasmic translational apparatus were divided into three separate groups with a characteristic behavior. A group of genes shown to be translationally upregulated was shown to also be stabilized in response to stress. List of publications This thesis is based on the following papers, which will be referred to in the text by their Roman numerals I – IV: I. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Elizabeth Bilsland, Claes Molin, Swarna Swaminathan, Anna Ramne and Per Sunnerhagen, Mol. Microbiol., 2004. 53(6):1743-56. II. Rck2 is required for programming of the ribosomes during oxidative stress Swarna Swaminathan, Tomas Masek, Claes Molin, Martin Pospisek and Per Sunnerhagen, Mol. Biol. Cell., 2006. Mar;17(3):1472-82. III. mRNA stability changes precede changes in steady – state mRNA amounts during hyperosmotic stress. Claes Molin, Alexandra Jauhiainen, Jonas Warringer, Olle Nerman and Per Sunnerhagen, RNA, 2009. Apr;15(4):600-14. IV. A comparison between regulation of mRNA stability and polysomal association during osmotic stress. Claes Molin, Janeli Sarv, Olle Nerman and Per Sunnerhagen Manuscript.
منابع مشابه
Responses of Almond Genotypes to Osmotic Stress Induced In Vitro
Drought is one of the major limitations to crop production worldwide. This study was conducted to evaluate the response of five almond genotypes and peach×almond hybrid GF to drought stress in vitro, and screening drought tolerance. Explants subjected to polyethylene glycol osmotic stress ( , , and . % WV) on the MS medium. Increasing PEG level in the medium significantly reduced fresh weight a...
متن کاملMonitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing...
متن کاملRole of the HaHOG1 MAP Kinase in Response of the Conifer Root and But Rot Pathogen (Heterobasidion annosum) to Osmotic and Oxidative Stress
The basidiomycete Heterobasidion annosum (Fr.) Bref. s.l. is a filamentous white rot fungus, considered to be the most economically important pathogen of conifer trees. Despite the severity of the tree infection, very little is known about the molecular and biochemical aspects related to adaptation to abiotic stresses. In this study, the osmotic and oxidative tolerance as well as the role of th...
متن کاملStress-induced gene expression in Candida albicans: absence of a general stress response.
We used transcriptional profiling to investigate the response of the fungal pathogen Candida albicans to temperature and osmotic and oxidative stresses under conditions that permitted >60% survival of the challenged cells. Each stress generated the transient induction of a specific set of genes including classic markers observed in the stress responses of other organisms. We noted that the clas...
متن کاملResponse of potato species to salt and osmotic stress in vitro and the role of acetylsalicylic acid: non-enzymatic antioxidants . Fatemeh Daneshmand1*, Mohammad Javad Arvin2
In a series of experiment, the response of two contrasting potato species, namely, Solanum acaule (tolerant) and Solanum tuberosum cv. Agria (intolerant) to salt (80 mM NaCl) and drought stress (15% polyethylene glycol;PEG) was studied in vitro. Furthermore, the role of acetyl salicylic acid (ASA) (1 and 10 µM) in alleviating oxidative stress was investigated. In Agria cultivar, NaCl and PEG r...
متن کاملProtective Role of Arginine Against Oxidative Damage Induced by Osmotic Stress in Ajwain (Trachyspermum ammi) Seedlings Under Hydroponic Culture
Assessing the tolerance of medicinal plants is important for planting them in drought areas. Arginine is a growth regulator and its role in plants’ tolerance to environmental stresses such as drought has been investigated. To evaluate the protective effects of arginine against osmotic stress induced by polyethylene glycol in ajwain (Trachyspermum ammi) seedlings, an experiment was conducted as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009